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1 Arnett's semi-analytic evolution

We follow A96 (which in turn follows Arnett 1979ApJ...230L..37, 1980ApJ.
..237..541A, 1982ApJ...253..785A; a nice recent write-up for SN I � which
have little e�ects od recombination � is in 2017ApJ...846...33A) and con-
sider a ball of gas with initial radius R0 that is homologously expanding at
constant velocity vsc, and has an initial thermal energy E0. The �rst law of
thermodynamics can be written as,

Ė + PV̇ = εM − L,

where E is the total energy, V ≡ 4π
3 R

3 is the volume, P the pressure, ε the
energy generation rate (by radioactive decay) per unit mass, M the ejecta
mass, and L the luminosity.

Assume the energy and pressure are dominated by radiation, i.e., E ' E ,
and P ' 1

3E/V . Dividing by E on both sides and using homology, one �nds,
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where the heating timescale τh = E/εM and the di�usion timescale, which
leads to a lumunosity Ldiff = E/τdiff , is also given by,

τdiff =
κM

βcR
= τdiff,0

R0

R
,

where in the second equality one implicitly assumes constant opacity. For a
constant density ball, β = 13.8.

We create a �one zone� model by assuming that the spatial (x ≡ r/R)
and time dependence can be split,

T 4(x, t) = T 4
0 φ(t)Ψ(x).
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For constant density ρ = M/4
3πR

3 and constant opacity κ,

Ψ(x) =
sin(πx)

πx
.

In terms of these functions, the thermal energy can be written as,

E =

∫ R

0
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where we used that
∫ 1

0 Ψ(x)x2 dx = 1/π2. The factor R0/R accounts for adi-
abatic expansion and φ(t) for radiation loss and radioactive heating. Gen-
erally, given the assumption of homology, we can write in terms of initial
properties,

E = E0
R0

R
φ(t).

Then, the general expression for the luminosity is,

L =
E
τdiff

=
E0

R0
R φ(t)

τdiff,0
R0
R

= L0φ(t).

Supposing the initial thermal energy is of order the kinetic energy, i.e., E0 '
1
2Mv2

sc, the initial lumonosity L0 = E0/τdiff,0 ∝ v2
scR/κ is independent of

mass, but proportional to radius. Faster ejections (larger energy) from larger
stars (faster di�usion) give more luminous transients.

1.1 Di�usion and heating

With just di�usion and heating, one has

d
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where we tried to write in terms of ratios on the right-hand side, with ε/ε0
capturing the time dependence of the heating process (and where we again
implicitly assumed constant opacity).

Ignoring heating, an analytic solution is possible. Using that τdiff =
τdiff,0(R0/R) = τdiff,0/(1 + vsct/R0), and de�ning an expansion timescale
τexp,0 = R0/vsc, one �nds

φ = exp

(
− t

τdiff,0
− t2

2τexp,0τdiff,0

)
.
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Generally, τdiff,0 � τexp,0, and thus for t > τexp,0, the lightcurve is essentially
a Gaussian, with a timescale that is the geometric mean of the expansion
and di�usion times scales, τlc =

√
τexp,0τdiff,0 ∝

√
κM/vsc. Slower, more

massive ejections lead to longer transients.
Including heating, the integration needs to be done numerically. How-

ever, generally, one expects maximum to occur when φ̇ = 0, i.e., when
1/τheat = 1/τdiff (of course, if heating is too small, this maximum after ex-
plosion never happens). From their de�nitions, the timescales match when
L = εM . Thus, maximum luminosity gives a measure of the total amount
of radioactive decay � �Arnett's rule.� (This will be an underestimate if the
opacity is decreasing with time � or if this is happening e�ectively due to
recombination, but an overestimate if the heat is deposited deep down and
thus one sees heat di�using out from a time that there was more decay.)

1.2 Including recombination

At some temperature Ti, material will recombine and become essentially
transparent. If this happens inside the cloud, then this will e�ectively be at
optical depth zero, and the photosphere would be at T 4

eff ' 2T 4
i . As more

matter recombines, the photosphere will move in, with recombination and
advection (�freed� radiation) giving additional sources of luminosity. At this
time, one will have,

Ldiff + Ladv + Lrec = Lmin = 4πR2
i σ2T 4

i ,

where Ri = xiR is the radius of the recombination front, and where we used
the subscript �min� as a reminder that the luminosity cannot be lower than
this value for this radius.

The luminosity due to recombination is

Lrec = −4πR2
i ṘiρQ = −3x2

i ẋi
4π

3
R3ρQ = −3x2

i ẋiMQ,

where Q is the energy release per unit mass due to recombination.
For the advection and di�usion terms, the results depend on whether

the front moves slow or fast compared to the time to adjust the overall
temperature structure. Generally, though, Ldiff = E/τdiff and,

Ladv = −ẋi
∂E
∂xi

but the total thermal energy E and di�usion timescale τdiff may now depend
on xi. In consequence, not only the di�erential equation for φ has to be
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solved, but also one for the recombination front position xi. The latter can
be derived from the constraint that the additional luminosity Lrec +Ladv has
to match the excess luminosity Lmin − Ldiff , or

−ẋi
[
3x2
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]
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i 2σT
4
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τdiff

Below, we will also use the timescale on which the initial energy would be
radiated at an e�ective temperature of 21/4Ti,
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Figure 1: Fast and slow approximation to a recombination wave. From A96,
his Fig. 13.7.

1.2.1 Slow recombination front

If the recombination front moves slowly, photon di�usion inside it will ensure
the temperature structure adjusts to its new outer boundary, Ri = xiR,
with the same spatial structure ([T (x)/T (0)]4 = Ψ(x/xi)). Thus, the total
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thermal energy will be

E = 4πR3aT (0, t)4

∫ xi

0
Ψ(x/xi)x

2dx = E0
R0

R
φ(t)x3

i ,

where φ(t) accounts for changes in central properties due to the recombina-
tion wave and associated energy loss. Given this, the advection luminosity
is given by,

Ladv = −ẋi
∂E
∂xi

= −3x2
i ẋiE0

R0

R
φ(t).

Since the size is decreasing, the luminosity due to photon di�usion also
changes, becoming

Ldiff =
E
τdiff

=
E0

τdiff,0
φ(t)xi,

where we used that τdiff = τdiff,0(R0/R)x2
i , with the dependence on x2

i re�ect-
ing the dependence of τdiff on M/R (for constant density the mass enclosed
within the recombination front scales with x3

i ). The di�erential equations to
be solved thus become,
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Simplifying,
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1.2.2 Fast recombination front

For a fast-moving recombination front, the temperature structure inside will
not react to the fact that the outer parts are being chopped o�. The total
thermal energy inside the recombination wave is,

Ex<xi = 4πR3aT (0, t)4

∫ xi

0
Ψ(x)x2 dx = E0

R0

R
φ(t)π2

∫ xi

0
Ψ(x)x2 dx.
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Using that d/dxi
∫ xi

0 ψ(x)x2dx = x2
iψ(xi), the advection luminosity is given

by,

Ladv = −ẋi
∂Ex<xi
∂xi

= −3x2
i ẋi

π2

3
Ψ(xi)E0

R0

R
φ(t).

The luminosity due to photon di�usion from the inside now changes only
because we are evaluating it at a di�erent position, becoming

Ldiff = L0
diffφ(t)

∣∣−x2∂Ψ/∂x
∣∣
xi

|−x2∂Ψ/∂x|1
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xi

=
E0
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where L0
diff is the di�usion luminosity we would obtain ignoring the recombi-

nation wave, and where we have used that [−x2∂Ψ/∂x]xi = (1/π) sin(πxi)−
xi cos(πxi) = π2I(xi) (where π2I(xi) = π2

∫ xi
0 Ψ(x)x2dx is the normalised

integral).
The di�erential equations to be solved now become,
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Figure 2: Comparison of explosions with and without recombination and
heating by radioactive decay. Shown are curves for the �fast� since for the
�slow� case I could not reproduce the curves in A96 as well. Still, the general
trends are clear and should be correct.
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Figure 3: Semi-analytic lightcurves for supernovae with varying properties.
Those not varied are held �xed at those inferred for SN 1987A by A96 (his
Table 13.2): Mej = 15M�, ESN = 1.7 B, R0 = 3× 1012 cm, κ = 0.2 cm2 g−1,
MNi = 0.075M�, Tion = 4500 K, Qion = 13.6 eV nucleon−1. Recombination
uses the �fast� prescription. Ignored are losses of gamma rays, and hence the
luminosity at late times is overestimated.

8


	Arnett's semi-analytic evolution
	Diffusion and heating
	Including recombination
	Slow recombination front
	Fast recombination front



