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1 Arnett’s semi-analytic evolution

We follow A96 (which in turn follows Arnett 1979ApJ. . .230L. .37, 1980ApJ.
..237..541A,1982ApJ. . .253. .7854; a nice recent write-up for SN I — which
have little effects od recombination — is in 2017ApJ. . .846...334) and con-
sider a ball of gas with initial radius Ry that is homologously expanding at
constant velocity vsc, and has an initial thermal energy &. The first law of
thermodynamics can be written as,

E+PV =cM—L,

where E is the total energy, V = 47FR3 is the volume, P the pressure, € the
energy generation rate (by radloactlve decay) per unit mass, M the ejecta
mass, and L the luminosity.

Assume the energy and pressure are dominated by radiation, i.e., E ~ &,
and P ~ %8 /V . Dividing by £ on both sides and using homology, one finds,

T R 1.R T R 1 1
4—+3—+-3—==4 = -
T + R + 3 R (T R) Theat  Tdiff

where the heating timescale 7, = £/eM and the diffusion timescale, which
leads to a lumunosity Laig = £/Taist, is also given by,

KM Ry

Tdiff = B R Tdiff,0 5~ R’

where in the second equality one implicitly assumes constant opacity. For a
constant density ball, 5 = 13.8.

We create a “one zone” model by assuming that the spatial (z = r/R)
and time dependence can be split,

T (2,1) = Too(1) ¥ ().
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For constant density p = M/ %WR?’ and constant opacity &,

W(r) = sin(ﬂ'x)'

T

In terms of these functions, the thermal energy can be written as,

R 1 4 R
&= / aT (r,t)*4mr? dr = 47TR3aT(0,t)4/ U(z)z? de = —RgaTalfo (1),
0 0 i

where we used that fol VU (z)z? dz = 1/72. The factor Rg/R accounts for adi-
abatic expansion and ¢(t) for radiation loss and radioactive heating. Gen-
erally, given the assumption of homology, we can write in terms of initial

properties,
Ry
E =& —¢(t).
0% (1)

Then, the general expression for the luminosity is,

£ &fot)
Tdiff Tdifho%

L= — Log(1).

Supposing the initial thermal energy is of order the kinetic energy, i.e., & ~
$MwvZ, the initial lumonosity Ly = & /Tairo o vZR/k is independent of
mass, but proportional to radius. Faster ejections (larger energy) from larger

stars (faster diffusion) give more luminous transients.
1.1 Diffusion and heating
With just diffusion and heating, one has

LR 4 1 1 ¢:[ e/ o 1 ] R

= — = — <:> — -
(TR)* ¢ Theat  Tdiff o Theat, 0  Taiff,0 | Ro’

where we tried to write in terms of ratios on the right-hand side, with €/¢g
capturing the time dependence of the heating process (and where we again
implicitly assumed constant opacity).

Ignoring heating, an analytic solution is possible. Using that 74i¢ =
Taitt,0(Ro/R) = Tair,0/(1 + vsct/Rp), and defining an expansion timescale
Texp,0 = R0/ Usc, one finds

5 ( t 12 )
=exp| — — )
TAifF,0  2Texp,07diff,0



Generally, Tqif 0 > Texp,0, and thus for ¢ > 7exp 0, the lightcurve is essentially
a Gaussian, with a timescale that is the geometric mean of the expansion
and diffusion times scales, Tic = \/Texp,07diff,0 X /KM /Vsc.  Slower, more
massive ejections lead to longer transients.

Including heating, the integration needs to be done numerically. How-
ever, generally, one expects maximum to occur when gb = 0, i.e., when
1/Theat = 1/7aie (of course, if heating is too small, this maximum after ex-
plosion never happens). From their definitions, the timescales match when
L = eM. Thus, maximum luminosity gives a measure of the total amount
of radioactive decay — “Arnett’s rule.” (This will be an underestimate if the
opacity is decreasing with time — or if this is happening effectively due to
recombination, but an overestimate if the heat is deposited deep down and
thus one sees heat diffusing out from a time that there was more decay.)

1.2 Including recombination

At some temperature T;, material will recombine and become essentially
transparent. If this happens inside the cloud, then this will effectively be at
optical depth zero, and the photosphere would be at Tf ~ 2Ti4. As more
matter recombines, the photosphere will move in, with recombination and
advection (“freed” radiation) giving additional sources of luminosity. At this
time, one will have,

Laiff + Ladv + Lrec = Linin = 47TRZ‘20'2T’Z‘4,

where R; = x; R is the radius of the recombination front, and where we used
the subscript “min” as a reminder that the luminosity cannot be lower than
this value for this radius.

The luminosity due to recombination is

: . Am .
Liee = —47TRZ-2RZ'pQ = —31:22:101'?1%3,0@ = —3x?miMQ,

where @ is the energy release per unit mass due to recombination.

For the advection and diffusion terms, the results depend on whether
the front moves slow or fast compared to the time to adjust the overall
temperature structure. Generally, though, Lgig = £/7qig and,

. 0

Lagy = *xiaixi
but the total thermal energy £ and diffusion timescale 74;¢ may now depend
on x;. In consequence, not only the differential equation for ¢ has to be



solved, but also one for the recombination front position x;. The latter can
be derived from the constraint that the additional luminosity Lyec + Lagy has
to match the excess luminosity Lyin — Laig, or

o€

—; [3x§MQ +3 £

Tdiff

} = 4w R*2?20 T} —

i
Below, we will also use the timescale on which the initial energy would be
radiated at an effective temperature of 21/47T},
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Figure 1: Fast and slow approximation to a recombination wave. From A96,
his Fig. 13.7.

1.2.1 Slow recombination front

If the recombination front moves slowly, photon diffusion inside it will ensure
the temperature structure adjusts to its new outer boundary, R; = x; R,
with the same spatial structure ([T(z)/T(0)]* = ¥(z/z;)). Thus, the total



thermal energy will be

&= 47TR3aT(O,t)4/O U(x/x;)x de = c‘foﬁ()d)(t)a:?,

where ¢(t) accounts for changes in central properties due to the recombina-
tion wave and associated energy loss. Given this, the advection luminosity
is given by,
E Ry

= —327%:E0— (1)
al'i i ic0 R ¢( )
Since the size is decreasing, the luminosity due to photon diffusion also
changes, becoming

Ladv = _Ct'i

E &
Laig = — = B(t)w;,
Tdiff  Tdiff,0

where we used that aig = Taifr 0(Ro/R)x?, with the dependence on z7 reflect-
ing the dependence of 74i¢ on M /R (for constant density the mass enclosed
within the recombination front scales with 7). The differential equations to
be solved thus become,

¢_eM R 1 R
¢ Eopx? Ry Taimor? Ro’
—3a7 i [MQ + 50R0¢] = 47TR21'2220'TZ-4 — 2 ox;.
R Tdiff 0

Simplifying,

é_ [ €/€o B 1 ] E
¢ Theat,00%3  Taifr,0x7 | Ro’
o

bl (R) _ gm
Ti,0 \ o Tdift,0
MQ@Q Ry

& TRY

2 .
—3x;x; =

1.2.2 Fast recombination front

For a fast-moving recombination front, the temperature structure inside will
not react to the fact that the outer parts are being chopped off. The total
thermal energy inside the recombination wave is,

T

Epea; = AT R3aT (0, t)4/ Z U(z)x? de = Eo%c;ﬁ(t) 71'2/ U(x)z? dz.
0 0



Using that d/dz; Ori Y(z)z?dr = 229 (z;), the advection luminosity is given
by,
. 0z, w2 R
Lagy = — ax;m = —317123%?‘1’(%)50%(25@)-
The luminosity due to photon diffusion from the inside now changes only

because we are evaluating it at a different position, becoming

= 5 s ym2i(ay).
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where Lgiﬁ is the diffusion luminosity we would obtain ignoring the recombi-
nation wave, and where we have used that [~220¥ /dz],, = (1/7)sin(7z;) —
zicos(ma;) = w21 (x;) (where 21 (x;) = 72 [ V(x)a?dx is the normalised
integral).

The differential equations to be solved now become,

$__eM R 1 R
¢ Eoopm?I(x;) Ry Taimo Ro’

2 Ry 7 2,2 4 &o 2
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Tdiff,0
Simplifying, '
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Figure 2: Comparison of explosions with and without recombination and
heating by radioactive decay. Shown are curves for the “fast” since for the
“slow” case I could not reproduce the curves in A96 as well. Still, the general
trends are clear and should be correct.
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Figure 3: Semi-analytic lightcurves for supernovae with varying properties.
Those not varied are held fixed at those inferred for SN 1987A by A96 (his
Table 13.2): My = 15 Mg, Fsny = 1.7B, Ry = 3 x 102 cm, £ = 0.2cm? g1,
My = 0.075 Mg, Tion = 4500K, Qion = 13.6eV nucleon™!. Recombination
uses the “fast” prescription. Ignored are losses of gamma rays, and hence the

luminosity at late times is overestimated.
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