AST3100 Astrophysical transients "You don't observe the same Universe twice!" Ziggy Pleunis Meeting 1 Week 5 2022 October 13

Breaking news: GRB 20221009 is the brightest ever detected!

Credit: Astro-COLIBRI https://twitter.com/AstroColibri/stat us/1579478412678561792 Photons up to 18 TeV from LHAASO? https://gcn.gsfc.nasa.gov/gcn3/32677.gcn3

Credit: Jon Miller https://www.astronomerstelegram.org/?rea d=15661 https://twitter.com/jonastrox/status/15798

16995729833984

MYSTERY OBJECT Precise localization of fast radio burst reveals distant host

and enigmatic persistent source PAGES 32 & 50

Pulsars

- Discovered in 1967 by
 Jocelyn Bell Burnell
- Rapidly rotating neutron stars with misalignment between their rotational and magnetic axes

Pulsars

Dispersion in the interstellar medium

Fast radio bursts (FRBs)

- First discovered in 2007
- Duration ~ ms
- Extragalactic
- T_B ~ 10³⁶ K
- ~10³ sky⁻¹ day⁻¹
- At least a few dozen sources repeat
- Origin unknown
- Unique probes of the intergalactic medium and potentially cosmology

2007 — Initial discovery

Lorimer et al.

- "Lorimer burst"
- Duration ~ ms
- Extragalactic based on DM (< 1 Gpc)
- Hundreds such events
 each day
- Supernova or binary star merger?

Fast radio bursts

(in data from 2001)

2007 — Initial discovery ☐ Lorimer et al.

$$\Delta t = R\zeta^2 / 2c\Gamma^2$$

~ms transient observable from ~Gpc distance -> brightness temperature ~10³⁶ K, energy releases of ~10³³ J and a source size ~< 10³ km -> coherent emission from a compact object

O(1000) sky/day

2007 — Initial discovery

🖂 Liam Connor

2013 — A population of FRBs ☐ Thornton et al.

• "Lorimer burst" is not an anomaly

2014 — First FRB detected by a different telescope than Parkes

Spitler et al.

 FRBs are not generated locally at the Parkes telescope

Fast radio bursts

Dunlap fellow Dr. Paul Scholz

2016 — First repeating source

Spitler et al.

- "FRB 121102"
- Rules out cataclysmic origin for this source
- Enables follow-up observations:
 - Zoom in on source
 - Try to catch optical light, X-rays, gamma-rays as well

2016 — First repeating source

$$E_{\text{bursts}} = E_{\text{radio}} \times F_b \times \eta^{-1} \times \zeta^{-1}, \qquad (5)$$

where E_{bursts} is the total energy emitted by FRB source during bursts, F_b is the beaming factor, η is the radio efficiency which is normalized to $\sim 10^{-5}$ (similar order to FRB 20200428), and ζ is the observation duty cycle.

Taking the nominal values of $\eta = 10^{-5}$ and $F_b = 0.1$, the total burst energy released on September 28 has reached $(2.46 \times 10^{46} \text{ erg})\eta_{-5}^{-1}F_{b.-1}$. Compared with the total dipolar magnetic energy of a magnetar $E_{\text{mag}} = (1/6)B_p^2R^3 \sim (1.7 \times 10^{47} \text{ erg})B_{p,15}^2R_6^3$, the burst energy emitted on this day already exceeded 14.3% $\eta_{-5}^{-1}F_{b,-1}$ of the available magnetar energy.

2017 — First localized FRB

(after tens of hours of observing and 1 year of trying)

- Host is a star-forming dwarf galaxy
- Redshift measurement (z ~ 0.19) puts the source firmly outside of the Milky Way

2017 — First localized FRB

- Host is a star-forming dwarf galaxy
- Redshift measurement (z ~ 0.19) puts the source firmly outside of the Milky Way

2017 — First localized FRB

Chatterjee et al. Tendulkar et al. Bassa et al. Law et al.

- Host is a star-forming dwarf galaxy
- Redshift measurement (z ~ 0.19) puts the source firmly outside of the Milky Way

Fast radio bursts 2007–2016

Searching for FRBs

Parkes

Green Bank Telescope

Arecibo

ASKAP

CHIME/FRB

45°

 \bigcirc

NRAO/AUI

Detection rate predictions

Fast radio bursts

CHIME/FRB Collaboration, 2018 after Chawla et al. 2017

Dominion Radio Astrophysical Observatory, Penticton, B.C.

Fast radio bursts

A designer I may the

21

Dominion Radio Astrophysical Observatory, Penticton, B.C.

DRAO Synthesis Telescope

John A. Galt 26-m Telescope

CHIME Main building Pathfinder 22-MHz Telescope (decommissioned)

Canadian Hydrogen Intensity Mapping Experiment (CHIME)

400 to 800 MHz \Leftrightarrow z = 2.5 to 0.8 for 21 cm

CHIME/FRB	2.5-1.3°	
		<text><text><text></text></text></text>
CHIME/FRB collaboration+ 2018		
Fast radio bursts		

Per-beam triggers

Signal collapsed over 4 East-West beams

Detection of FRBs down to 400 MHz

Fast radio bursts

-40 -20

20

40

0

Time (ms)

CHIME/FRB Collaboration, Nature, 2019

Fast radio bursts 2007–2020

2019 — A population of repeating sources

Shriharsh Tendulkar

18 new repeating sources of FRBs

Fast radio bursts

CHIME/FRB Collaboration 2019<u>ab</u>, 📄 Fonseca+ 2020

2019 — A population of repeating sources

2020 — Periodic activity from a repeating source

figure out source

 Enables even better follow-up observations

2021 — Chromatic periodic activity from a repeating source

18 LOFAR bursts (purple) systematically delayed w/r/t CHIME/FRB (green): not because of exposure

ZP+ 2021a, see also 📄 Pastor-Marazuela+ 2021 📄 Bethapudi+ submitted

Ziggy Pleunis

2020 — FRB-like burst from a Galactic magnetar

- CHIME/FRB Collaboration 2020
- Bochenek et al. 2020
- Very bright burst detected by multiple telescopes
- Bridge between Galactic and extragalactic radio bursts
- Likely that at least some FRBs are also from magnetars

2020 — FRB-like burst from a Galactic magnetar

- CHIME/FRB Collaboration 2020
- Bochenek et al. 2020
- Very bright burst detected by multiple telescopes
- Bridge between Galactic and extragalactic radio bursts
- Likely that at least some FRBs are also from magnetars

2020—present — Connecting Galactic and extragalactic transients

Fast radio bursts

Kenzie Nimmo, PhD thesis

2021 – A population of FRBs

Fast radio bursts

CHIME/FRB Collaboration 2021

Zoo of FRBs detected with CHIME/FRB

Ziggy Pleunis

CHIME/FRB Collaboration 2021

FRB morphology in the first CHIME/FRB catalog

📄 ZP+ 2021b

FRB morphology in the first CHIME/FRB catalog

📄 ZP+ 2021b

Karl G. Jansky Very Large Array

European VLBI Network

Australian SKA Pathfinder

FRB 20200120E

A repeating source localized to a globular cluster associated with M81

Q What does this tell us about possible progenitors?

📄 Bhardwaj+ 2021, 📄 Kirsten+ 2022

The origin(s) of FRBs

Do all FRBs repeat? Are there multiple classes of (repeating) FRBs?

The origin(s) of FRBs

The origin(s) of FRBs

Fig. 10 Different models of FRB emission. (a) Shock model from Metzger et al. (2019) where the FRB is produced at large (10^{10} cm) radii from the compact central engine (e.g., a magnetar or black hole). (b) Magnetospheric model from Lu et al. (2020) where the FRB is produced in the neutron star magnetosphere.

📄 Petroff+ 2022

Using FRBs as probes of the unseen Universe

2020 — Finding the "missing" baryons

Macquart et al. 2020

- Half of the matter in the Universe was never directly detected
- From DMs and redshifts can measure the density of free electrons in the intergalactic medium

CHIME/FRB Outriggers

- Pinpointing all FRBs detected by CHIME/FRB to subarcsecond precision
- Allows for association within host galaxy and redshift determination

An FRB localized at detection to an edge-on galaxy using VLBI

Two baselines providing a localization $\sim < 51$ mas to galaxy at $z \sim 0.177$

Fast radio bursts

Cassanelli, Leung, Sanghavi+ submitted

Outriggers status

Green Bank, West Virginia

Princeton, British Columbia

Hat Creek, California

<image>

Fast radio bursts

CHIME/FRB Collaboration, Jane Kaczmarek, Andrew Seymour, Jojo Boyle

Figure 12. Positions of 6 magnetars for which radio detections have been made, shown in Galactic coordinates. The DM of the YMW16 model is shown in the background, and the green line marks the divide between the northern and southern hemispheres.

GReX being developed at Caltech Connor et al. 2021

Catching dim FRBs

Five hundred meter Aperture Spherical Telescope in China

Hundreds of bursts for three prolific repeaters

