
1. Binary evolution

Most stars increase in radius as they evolve, often drastically. If in a binary, they may at some point overflow
their Roche lobes, leading to mass transfer to the companion. If this is stable, mass transfer will be on the
evolutionary timescale. If unstable, it can be on the dynamical or thermal timescale. Masses transfer ceases
when the star stops trying to expand; in giants, this is when most of the envelope has been transferred, and
the remainder becomes so tenuous that it shrinks. Thus, one generally is left with just the core of the star.
This process, and variations on it, is responsible for most of the more interesting stars we observe.

Fig. 1. Radius evolution of stars of various masses. In the left-hand panel, the one unmarked dotted line
between ‘helium core flash’ and ‘core helium ignition’ marks the division between those helium cores (at
lower masses) which evolve to degeneracy if stripped of their envelope, and those (at higher masses) which
ignite helium non-degenerately and become helium stars. In the right-hand panel, core masses interior to the
hydrogen-burning shell are indicated with solid lines, and dashed lines those interior to the helium-burning
shell. Solid lines intersecting the base of the giant branch (dash-dotted curve) correspond to helium core
masses of to 0.15, 0.25, 0.35, 0.5, 0.7, 1.0, 1.4, and 2.0 M⊙; those between helium ignition and the initial
thermal pulse to 0.7, 1.0, 1.4, and 2.0 M⊙, and those beyond the initial thermal pulse to 0.7, 1.0, and 1.4 M⊙.
Dashed lines between helium ignition and initial thermal pulse correspond to carbon-oxygen core masses
of 0.35, 0.5, 0.7, 1.0, and 1.4 M⊙. Beyond the initial thermal pulse, helium and carbon-oxygen core masses
converge, with the second dredge-up phase reducing helium core masses above ∼ 0.8 M⊙ to the carbon-
oxygen core. From Webbink (2008), his Figs 1 and 2.



Mass loss and tranfer

Consider a star that looses or transfers mass at some rate Ṁ.

Effect on orbit

The angular momentum of an orbit is given by J = (M1M2/M)
√
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Conservative mass transfer: Ṁ1 = −Ṁ2, Ṁ = 0, J̇ = 0. Thus,
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where q = M2/M1 is the mass ratio between the donor (star 2) and the accretor (star 1). For donors less
massive than the accretor, the orbit expands upon mass transfer (remember that Ṁ2 < 0).

Looking at the Roche lobe for a less massive donor, for which RL ≃ 0.46a(M2/M)1/3 (Paczyński, 1971),
one finds
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showing that the Roche lobe, as expected, grows a little slower than the orbital separation. (An analysis valid
for all q would use the approximation of Eggleton (1983), RL/a ≃ 0.46q2/3/[0.6q2/3 + ln(1 + q1/3)].)

Spherically symmetric wind: Ṁ2 = Ṁ, Ṁ1 = 0, J̇ = (Ṁ2/M2)(M1/M)J. Hence,
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Thus, for mass loss (Ṁ < 0), the orbit expands.

Fig. 2. ζL ≡ ∂ ln RL/∂ ln M2 as a function of
mass ratio, with all mass transfer through a sin-
gle channel: conservative (cons); isotropic wind
from donor star (wind); isotropic re-emission of
matter, from vicinity of ‘accreting’ star (iso-r).
(Also shown is a ring formation, indicative of
mass loss from an outer Lagrange point). From
Soberman et al. (1997), their Fig. 4.
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Spherically re-emitted wind: Ṁ2 = Ṁ, Ṁ1 = 0, J̇ = (Ṁ2/M1)(M2/M)J (idea is that accretor cannot handle
mass transferred to it and re-emits it as a wind). Hence,
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Hence, orbit expands for q < (1+
√

17)/4 = 1.28 (with again a somewhat lower value for increasing Roche-
lobe radius), i.e., it is less quickly unstable than for conservative mass transfer. For a more detailed analysis,
see Soberman et al. (1997).

Effect on stellar radius

If the mass is lost from the outside of a star, the star becomes initially smaller, but on a hydrodynamic
timescale it will partially re-expand in responds to the decreased pressure. Which effect dominates depends
on the internal structure of the star. Generally, for thermal envelopes, the stars shrinks inside its Roche lobe,
re-expanding only on the thermal timescale, typically to nearly its original size (especially for giants). For
more detail, see Hjellming & Webbink (1987). However, a complication for thermal-timescale mass transfer
is that, if the secondary is substantially less massive, it cannot accrete sufficiently fast and will bloat itself.
For massive stars, for M2/M1

<∼ 0.7, this leads to contact, and almost certainly further mass loss and/or a
merger (Pols, 1994; Wellstein et al., 2001; Podsiadlowski, 2010).

Completely convective stars, or stars with deep convective layers, however, increase in size upon mass
loss. For completely convective stars, which are described well by polytropes with P = Kργ with γ = 5

3
(and

thus n = 1.5), this follows immediately from the mass radius relation: R ∝ M−1/3 (true for constant K, i.e.,
for constant entropy or completely degenerate, non-relativistic gas). Comparing this to the change in Roche
lobe for conservative mass transfer, one sees that stability requires that
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From the work of Han & Webbink (1999), it is indeed clear that for low-mass white dwarfs, dynamical
instability sets in for q > 2

3
. For higher mass accretors (M1 & 0.3 M⊙), the mass-transfer rate rapidly becomes

super-Eddington, meaning some mass has to leave the system. As shown above, this implies the binary
expands more and it is easier to keep mass transfer stable. Han & Webbink (1999) find that, roughly, stability
requires q . 0.7 − 0.1(M1/M⊙).

Common-envelope evolution

When dynamically unstable mass transfer starts, the stars enter a common envelope. This will lead to a
merger unless one envelope is relatively loosely bound, e.g., if the donor is a red giant. The process is still
very uncertain, and usually an energy criterion is used to decide whether or not a complete merger occurs. We
write the initial orbital energy as Eorb,i = GM1M2/2ai, the final one as Eorb,f = GM1,cM2/af , and the envelope
binding energy as Ee = GM1M1,e/λR1,e. Taking M1,e = M1 − M1,c, a roche-lobe filling star (R1,e = RL), and
assuming an efficiency αCE = E

e
/(Eorb,f − Eorb,i), one finds a total shrinkage of the orbit,
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This shrinkage is usually very large. Tracing back the evolution of double helium white dwarfs,
Nelemans et al. (2000), found that it cannot hold for the first mass-transfer phase. They proposed an al-
ternative description based on angular momentum loss, but this was criticised strongly by Webbink (2008).
Overall, though, the conclusion stands that for not too extreme mass ratios, mass transfer is stabilised some-
how (perhaps by irradiation driven winds; Beer et al. 2007).
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Angular momentum loss

Two stars can be driven closer by angular-momentum loss. For gravitational radiation (in a circular orbit),
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implying a merger time of 1.05× 107 yr(M/M⊙)−2/3(µ/M⊙)−1(P/1 hr)8/3, where µ = M1M2/(M1 +M2) is the
reduced mass, and P the orbital period. Thus, to merge within a Hubble time requires P <∼ 0.5 d.

For binaries with low-mass stars, angular momentum can also be lost by “magnetic braking” – a solar-
like wind coupled to a magnetic field. This mechanism is usually described by semi-empirical relations,
which are calibrated using the rotational evolution of single stars and using population synthesis models for
binaries.

Supernova explosions

One can solve the effect of a spherically symmetric supernova explosion by consiering that, for instantaneous
mass loss, the velocities of the two stars remain the same, but their mutual attraction has decreased. Thus,
the instantaneous position will become the periastron of the new orbit. For given mass loss ∆M,

rf,peri = ri ⇔ af(1 − e) = ai, (9)
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Solving this yields
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i.e., the orbit is unbound if ∆M > 1
2
(M1 + M2) (as can be seen more easily from the Virial Theorem). The

binary also gets a recoil kick, of
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Unfortunately, the assumption that supernova explosions are spherically symmetric seems rather poor,
since single radio pulsars have large space velocities, of several 100 km s−1. As a result, binaries likely unbind
even when relatively little mass is lost, and, conversely, may remain bound even if a large amount of mass is
lost (indeed, the latter may be a requirement to understand low-mass X-ray binaries, in which neutron stars
accrete from low-mass companions). There is fairly strong evidence, however, that some supernovae do not
impart (large) kicks, possibly those due to electron capture (van den Heuvel 2010, and references therein).

Tidal stability

For close binaries, tides will circularise the orbit. This is not possible if the mass ratio is too small. Stability
requires that some angular momentum transfer from the orbit to the star changes the stellar rotation faster

than the orbital one. Since Jorb = (M1M2/M)
√

GMa ∝ Ω−1/3 and Jstar = IstarΩ ∝ Ω, stability requires that
Jorb > 3Jstar. For low-mass stars, binaries with mass ratio q . 0.09 are unstable (Rasio, 1995).

Rapid rotation

Tidal synchronisation leads to rapid rotation. For low-mass stars, this leads to increased activity, some in-
crease in size, and a larger stellar wind (and thus angular momentum loss; magnetic breaking).

For massive stars, rotation induces mixing (de Mink et al., 2009). For fairly massive stars, just brings up
nitrogen. For M >∼ 50 M⊙ in a P <∼ 2 d binary, centrally produced helium is efficiently mixed. As a result,
these stars may burn completely to helium, and a lower-mass companion might evolve faster!
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Fig. 3. Minimum mass ratio required for tidal stability
as a function of gyration radius. From Rasio (1995), his
Fig. 1.
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6



Fig. 6. Further evolu-
tion of X-ray bina-
ries with short (left)
and long (right) or-
bital periods. From
Bhattacharya & Van
den Heuvel (1991),
their Figs. 32.
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